Skip to main content

Acid base Theory

Acid base 

The Arrhenius Theory of acids and bases
The theory
  • Acids are substances which produce hydrogen ions in solution.
  • Bases are substances which produce hydroxide ions in solution.
Neutralisation happens because hydrogen ions and hydroxide ions react to produce water.

Limitations of the theory
Hydrochloric acid is neutralised by both sodium hydroxide solution and ammonia solution. In both cases, you get a colourless solution which you can crystallise to get a white salt - either sodium chloride or ammonium chloride.
These are clearly very similar reactions. The full equations are:


In the sodium hydroxide case, hydrogen ions from the acid are reacting with hydroxide ions from the sodium hydroxide - in line with the Arrhenius theory.
However, in the ammonia case, there don't appear to be any hydroxide ions!
But if you look at the equations carefully, the ammonia is in solution - NH3(aq). Ammonia reacts with water like this:

This is a reversible reaction, and in a typical dilute ammonia solution, about 99% of the ammonia remains as ammonia molecules. Nevertheless, there are hydroxide ions there and those react with hydrogen ions in just the same way as hydroxide ions from sodium hydroxide.
So you can just about justify ammonia as being a base on the Arrhenius definition - it does produce hydroxide ions in solution. But most of the reaction is going to be a direct reaction between ammonia molecules and hydrogen ions - which doesn't fit the Arrhenius definition.
This same reaction also happens between ammonia gas and hydrogen chloride gas.

In this case, there aren't any hydrogen ions or hydroxide ions in solution - because there isn't any solution. The Arrhenius theory wouldn't count this as an acid-base reaction, despite the fact that it is producing the same product as when the two substances were in solution. That's silly!

The Bronsted-Lowry Theory of acids and bases
The theory
  • An acid is a proton (hydrogen ion) donor.
  • A base is a proton (hydrogen ion) acceptor.
The relationship between the Bronsted-Lowry theory and the Arrhenius theory
The Bronsted-Lowry theory doesn't go against the Arrhenius theory in any way - it just adds to it.
Hydroxide ions are still bases because they accept hydrogen ions from acids and form water.
An acid produces hydrogen ions in solution because it reacts with the water molecules by giving a proton to them.
When hydrogen chloride gas dissolves in water to produce hydrochloric acid, the hydrogen chloride molecule gives a proton (a hydrogen ion) to a water molecule. A co-ordinate (dative covalent) bond is formed between one of the lone pairs on the oxygen and the hydrogen from the HCl. Hydroxonium ions, H3O+, are produced.


Lewis acids
Lewis acids are electron pair acceptors. In the above example, the BF3 is acting as the Lewis acid by accepting the nitrogen's lone pair. On the Bronsted-Lowry theory, the BF3has nothing remotely acidic about it.
This is an extension of the term acid well beyond any common use.
What about more obviously acid-base reactions - like, for example, the reaction between ammonia and hydrogen chloride gas?
What exactly is accepting the lone pair of electrons on the nitrogen. Textbooks often write this as if the ammonia is donating its lone pair to a hydrogen ion - a simple proton with no electrons around it.
That is misleading! You don't usually get free hydrogen ions in chemical systems. They are so reactive that they are always attached to something else. There aren't any uncombined hydrogen ions in HCl.
There isn't an empty orbital anywhere on the HCl which can accept a pair of electrons. Why, then, is the HCl a Lewis acid?
Chlorine is more electronegative than hydrogen, and that means that the hydrogen chloride will be a polar molecule. The electrons in the hydrogen-chlorine bond will be attracted towards the chlorine end, leaving the hydrogen slightly positive and the chlorine slightly negative.https://bestnewyearmessage.blogspot.in/?m=1

Comments

Popular post

Human digestive system,(DIGESTIVE SYSTEM)

Your Digestive System:  Your digestive system is uniquely designed to turn the food you eat into nutrients, which the body uses for energy, growth and cell repair. Here's how it works. For more pharmacy Notes check PharmacyTheory Digestion  definition : The energy required for all the processes and activities that take place in our bodies is derived from the foods we ingest. The digestive system allows us to utilize food from such diverse sources as meat from an animal and the roots of a plant, and utilize them as an energy source. Whether it is the ability to coordinate the chewing of the food without injuring our tongue and lips or the propulsion of the food from the stomach into the duodenum while releasing the appropriate enzymes, our digestive system allows us to manage the process without much thought and often while performing other tasks. What is digestion? The process of digestion is a fascinating and complex one that takes the foo...

Non-aqueous titration

Nonaqueous titration  is the  titration  of substances dissolved in  solvents  other than water. It is the most common titrimetric procedure used in  pharmacopoeial   assays and serves a double purpose: it is suitable for the titration of very weak  acids  and very weak  bases , and it provides a  solvent  in which  organic compounds  are  soluble . The most commonly used procedure is the titration of  organic bases  with  perchloric acid in  anhydrous   acetic acid . These assays sometimes take some perfecting in terms of being able to judge the  endpoint  precisely. For obvious reasons  Karl Fischer titration  for water content is nonaqueous, usually done in  methanol  or sometimes in  ethanol . PRINCIPLE : The organic acids and bases are insoluble in water. These are extremely weak and cannot be analysed using normal titrimetric method...

Female Reproductive System Anatomy-Physiology-Functions-Examples

Female Reproductive System Anatomy-Physiology-Functions-Examples What Is the female reproductive System? Most species have 2 sexes: male and feminine. every sex has its own distinctive system. they're totally different in form and structure, however each ar specifically designed to provide, nourish, and transport either the egg or spermatozoon. Unlike the male, the human feminine incorporates a system placed entirely within the pelvis (that's the bottom a part of the abdomen). The external a part of the feminine procreative organs is named the female genital organ, which implies covering. placed between the legs, the female genital organ covers the gap to the duct and different procreative organs placed within the body. For Students Study Materials Are Available At: https://Pharmacytheory.com The fleshy space placed simply higher than the highest of the canal gap is named the mons pubis(pronounced: MONZ PYOO-bis). 2 pairs of skin flaps known as the lip surround the canal ga...

Principle of Conductometry Titration

Principle of Conductometry Titration What is the principle of conductometric titration? The main principle concerned during this technique is that the movement of the ions creates the electrical conduction. The movement of the ions is especially relied on the concentration of the ions. Conductometric volumetric analysis theory states that the end-point of the volumetric analysis method is set by means that of activity conduction. This theory is employed for colloids that have ionazable practical teams like latexes.  These practical teams ar acidic and therefore the theory uses caustic soda as a titrant.  To test conductometric volumetric analysis theory, add caustic soda from the measuring device, then plot the conduction readings that correspond to the increments against the titrant’s volume. CLICK HERE TO SEE NON-AQUEOUS TITRATION Conductometric Titration Experiment Benefits of the idea Conductometric volumetric analysis theory may be used for either murky or colored liqui...